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ABSTRACT 

A sequence of finite-dimensional normed spaces is constructed, each with 

two symmetr ic  bases, such that  the sequence of equivalence constants  be- 

tween these bases is unbounded. An essential tool in the proof is the 

edge-isoperimetric inequality in the discrete cube. 

In 1981, Read [9] disproved a long-standing conjecture that any Banach space 

either has at most one symmetric basis, up to equivalence, or else has uncount- 

ably many. He showed that  a Banach space can have any finite number of non- 

equivalent symmetric bases, or can have a countably infinite collection of them. 

The natural finite-dimensional analogue of this question, asked by Johnson, Mau- 

rey, Schechtman and Tzafriri [7], is the following. Does there exist a function 

]:  [1, ~ )  ~ [1, c~) such that any two C-symmetric bases of the same finite- 

dimensional normed space are always f(C)-equivalent? The most general result 

known in this direction is due to Schfitt [10], who showed that,  for every a > 0 

and every C > 1, there exists ~/= ~/((~, C) such that  if X is any n-dimensional 
X n normed space with d(X,g~)  >__ n ~, then any two symmetric bases ( ~)~=1 and 

(Y~)i~l of X are necessarily ~/(c~, C)-equivalent. Other positive results concerning 

the uniqueness of symmetric and unconditional bases have been proved by Bour- 

gain, Casazza, Lindenstrauss and Tzafriri [3], by Casazza, Kalton and Tzafriri 

[4] and in the paper of Johnson, Maurey, Schechtman and Tzafriri mentioned 

earlier. In this paper we give an example of a sequence of finite-dimensional 

spaces with two symmetric bases that  are not uniformly equivalent, answering 
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in the negative the question above. The construction is fairly simple: it is likely 

that  a more complicated variant of it would give a better  estimate for how great 

the lack of equivalence can be. We shall discuss this mat ter  briefly at the end of 

the paper. 

Let us begin by describing our space in general terms. Let A be an orthogonal 

matr ix (the work will consist later in finding an orthogonM matrix with suitable 

properties) and let ~: R n --* R n be the linear map defined by A. Let e l , . . .  ,en 

be the standard basis of R'~ and let ~2 be the group of symmetries of ~ ,  that is, 

the group of linear maps of the form 

n n 

aiel H ~ eiaie~r(i) 
i=1 i=1 

where ei = +1 for each i and 7r • S, .  For 1 < i < n let e~ = ~ei. This will be our 

second basis. Finally let • be the obvious corresponding group of symmetries 

associated with this basis, that  is, • = {~wc~-l: w • f/}. 

Given a map c~, the norm is constructed as follows. Define X0 to be the set 

{=t=el,..., +en}. Then define sets X1, X2 , . . .  inductively as follows. If j is odd, 

then 

x~ = { ¢ x : x  • X j _ l , ¢  • ~}, 

and if j is even, then 

x~ = {~x: x • x j _ l ,  ~ • a} .  

Given x • R '~, we now define Ilxll to be max{2-Jl(x,  xj)l: xj • X j , j  • N}. 

Obviously, this maximum is really over a finite set, but this is not important.  
e n ~ n It is easy to show that the bases ( i)i=l and (e~)~= 1 are both 2-symmetric. 

Indeed, suppose that  a = Ein=l aiei, that  Ilall = 2 - j  ](a, x)l for some x • x j  and 

that  j is even. By the definition of Xj ,  x = wy for some y • Xj_I  and w E f~, 

from which it follows that  w~x = (w~w-t)wy is in Xj for every w ~ E f L  This 

implies that  

IIw'all > 2-Jl(w'a, J x ) l  = 2-J l (a ,x) l  = Ilall 

for every w ~ E f~. 

If on the other hand j is odd, then for every w • f~, we have wx E Xj+I,  so 

that 

Ilwall > 2-<i+l)l(wa, wx) l - -  2-<~+l)l(a,x)l = 2 -1 Ilall. 
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e n ! n It follows that  ( i)i=l is 2-symmetric. The proof for (ei)~= 1 is almost identical. 

The idea now is to choose a so that Ite~ll - Ilaelll is as small as possible. 

If it tends to zero, then we are done, because it is easy to show that  the two 
- - I  n 

bases are at best (1/He~]l)-equivalent, by comparing Ilell[ E ( ~ =  1 g~e~) with 
n e I Ileal] -1 E(~-~.i= 1 g~ ~), where gl,-  • ,gn are i.i.d. Gaussian random variables. It 

is also not hard to show that  the construction just outlined must work for some 

(possibly not orthogonal) linear map a if there is any example at all, but we will 

not go into this. 

It turns out that  the ideal properties for the matrix A of a to have are the 

following. First, it should have rather few non-zero entries in each row and 

column, and second, it should be fairly random in appearance (so, for example, 

a tensor product of a k × k-Walsh matrix with the identity on R n/k would be 

no good). We shall begin by exhibiting a symmetric 2 k × 2 k matrix which has k 

entries of ± k  -1/2 in each row (and column) with the property that  the supports 

of any two rows are either disjoint or intersect in exactly two places. Obviously, 

they cannot intersect in one place only and have an inner product of zero. 

This matrix can be constructed in various different ways. The first is inductive. 

Define A~ = (1) and, for k > 0, let A t be defined by 

Ik-1 -A~_ 1 

where Ik-1 is the 2 k-1 ×2k-Lident i ty  matrix. Then, for k > 0, let Ak = k-1/2A~, 

and let ak be the linear map on R 2k defined by Ak. It is easy to check that Ak 

is an orthogonal matrix; since it is symmetric, we also have a 2 = 1. 

The second construction is a geometrical one--as the adjacency matrix of a 

graph with signed edges. The graph is just the k-dimensional cube, that  is, the 

power set of [k] ~ {1, 2 , . . . ,  k}, with A, B C [k] joined by an edge if and only it 

]A A B I = 1. The signs on the edges are defined inductively as follows. Let Q1 

have a positive sign on its single edge. Now, having determined signs for all the 

edges of Qk, divide the vertices of Qk+l into two classes, namely 

. 4 0 = { A c [ k + l ] : k + l C A }  

and 

AI = {A C [k + 1] : k + l  E A}. 
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Then the subgraphs of Qk+l induced by Ao and ,41 are each naturally isomorphic 

to Qk. Let A0 be given the signs of Qk (according to the natural isomorphism) 

and let `41 be given the opposite signs. Finally, let the edges between ,40 and 

,41 all have positive signs. Again, it is not hard to verify that,  after a suitable 

normalization, the adjacency matrix of this signed graph is orthogonal and sym- 

metric, either directly, or by observing that it is the same matrix as Ak defined 

earlier. 

Our task now is to estimate [[e~[], where e~ and [[.[[ depend in the way outlined 

earlier on the map a = ak just defined. Of key importance is the following 

lemma, due to Harper [5], Bernstein [1], Hart [6] and Lindsey [8]. (See [2] for a 

particularly short proof.) 

LEMMA 1: Let  ,4, B C Qk be two subsets of  the vertices of  the k-cube of  cardi- 

nality r. Then the number of  edges joining a vertex in ,4 to a vertex in B is at 

most  r log 2 r. 

Note that if r = 2 ~ for some integer l, then this maximum is attained by setting 

,4 = B = {A C [k]: A C [/]}. 

The next lemma is the main technical lemma after which our proof will be 

easy. First, let us set n = 2 k and define a sequence of subsets Y1, Y2,.. • of the 

unit sphere of ~ as follows. If j is even, then Yj = X j ,  where Xj is defined as 

earlier in terms of a. If j is odd, then Yj = {wax  : w E f~, x E Y j -1} .  

LEMMA 2: For any i E N with k i <_ n let Yi = k -112 Etk : l  et. Then i f  kJ <_ n 

and x E Yj ,  we have 

<_ S(j)k -1/2 

[or every w E fl and every Yl for which [i - j[ is odd, where f(j) = j!(2 log 2 k) 2j. 

Proo/: We shall use induction on j .  When j = 0, the result is trivial. Let us 

suppose then that j is odd, that the result is true for j - 1 and that x E Yj-1. 

Note that  

max{ l (wax ,  yi)l: w E ~t} = max{ l (a z ,  wyi)l: w • ~t} 

for every x and every i. We would therefore like to show that I(ax, wyi)[ < 

. f ( j )k  -1/2 for every even value of i and every w • [t. 

Without loss of generality we may suppose that  the coordinates ( x i ) ~ l  of x 

e n (with respect to ( i ) i = l )  are non-negative and in non-increasing order. It follows 
k i 

from the inductive hypothesis and this assumption that ~ t = l  xt  <_ kq2 . f ( j ) k  -1/2 
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for every odd value of i. We therefore have also tha t  xt < f ( j ) t - l k  -(i+1)/2, for 

every pair t, i of integers such tha t  i is even and t < k i < n. Tha t  is, we have 

tha t  xt <_ f ( j ) A ( t )  for every 1 < t < n, where 

t - l k  i/2 i =  L( logt / logk)]  even, 
)~(t) = k -(i+1)/2 i =  [ ( log t / logk ) ]  odd. 

We shall now est imate [(ax, wyi)l for an even value of i. First,  let us write 

x = x (1) + x (2) + x (3), where 

ki-1 

X(1) = Z x te t ,  
t=l  

ki+l 

X(2) = Z xtet, 
t=ki-l-t- 1 

X (3) = ~ xtet. 
t : k i + l + l  

Then,  by the Cauchy-Schwarz inequality, the fact tha t  IIxH2 = 1 and the 

est imate for ,k(t), we have 

x(1) 

ki-2 ki-1 

<-- t~=l xtet 14- t:k~i_2+lXtet 1 

<_ k (i-2)/2 + f ( j  - 1)k (i-2)/2 log k 

<_ 2 f ( j  - 1)k (I-2)/2 logk 

and hence, since Ilallx = v f~, tha t  Hax(UH1 <_ 2 f ( j  - 1)k (i-2)/2 log k. It  follows 

tha t  I(ax(i),  wyi)l _< 2 f ( j  - 1)k -1/2 log k. 

The  est imate  for I(ax(3), wyi)l is also easy. Indeed, IIx (3) I1~ <-- k-( i+2) /2 f (J  - 1) 

and [laH~ = vfk, so Hax(3)H~¢ <- k - ( i + W 2 f ( J  - 1), which implies tha t  

I(ax (3), w y ~ ) l  <_ k - q 2 k - ( i + W 2 k i  f ( j  - 1) 

g k - X / 2 f ( j -  1) . 

Of course, the most  impor tan t  est imate is tha t  of IIax(2),wyi)l , and this is 

where we shall use Lemma  1. Note tha t  the suppor t  of x has cardinal i ty at most 
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k j,  so if i > j then x (2) = 0. Otherwise, observe that  x (2) is dominated pointwise 

by f ( j  k ~(8), -- 1) ~8=0 where 

. k l  
~(a) ---- k-z~2 E t = l  e t ,  s = 1, 

(s  - 1 ) - l k  - i / 2  x"sk '  e /_~t=(s_l)ki+l t,  2 < 8 <~ k.  

Now, if A and B are two subsets of In] corresponding to subsets .4 and B of the 

vertices of Q~, and if XA and XB are the characteristic functions of A and B, but 

with arbitrary signs on the coordinates, then I(aXA, XB)I is certainly bounded 

above by the number of edges between .4 and B in Qk, multiplied by k -1/2. 

Hence, using Lemma 1, we obtain 

k- i l2k- i /2k  1/2 log2(ki)k i, s = 1, 
](a~(8)'wY~)] -< k-i /2(s  - 1)- lk- i /2k-1/2log2(ki)k  i, 2 < s < k. 

Adding, we obtain 

k--1 

< k-1 /2 i l °g2k(  1 + Z s - l )  f ( j  - 1) 
8----1 

<_ 2 f ( j  - 1)k-1/2j(log2 k) 2 , 

since, as remarked earlier, we may as well assume that  i _< j .  

Putt ing these three estimates together, we obtain that  

I(ax (2), wyi)l <_ 3k-1 /2 f ( j  - 1)j(log2 k) 2 

= f ( j )k -1 /2  

as required. 

This completes the inductive step when j is odd. When j is even, the argument 

is almost identical, so we shall not give it. I 

We are now ready to prove our main result. 

THEOREM 3: Let n = 2 k for some integer k. There exists an n-dimensional 

normed space with two 2-symmetric bases (ei)~=l and (ei)i= 1 whose constant of 

equivalence is a t / eas t  exp(log log n/8 log log log n). 

Proo~ As remarked earlier, it is enough to show, if we take the bases (ei)i~l, 
I n (ei)i= 1 and the norm defined in terms of a = ak above, that the norm of the 

vector [[e~[[ is at most < exp( -  log log n/81og log log n). 
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Let Xo, X1, X2, . . .  and Iio, 111,112,... be as defined earlier, and note that Xj = 

Yj if j is even and Xj C Yj+I if j is odd. Hence, by Lemma 2, 

I[e~[] = max{2-Jl<e~,x~)[ : j • N, xj • Z j}  

< max2-J  [ f ( j  + 1)k -1/2 A 1]. 
- jeN 

By considering the ratio of f ( j  + 1) to f ( j )  it is easy to see that  the second 

maximum is achieved either when j is as large as possible such that  f ( j  + 1) < 

k 1/2 or when it is as small as possible such that  f ( j  + 1) > k 1/2. In either 

case we have (j + 2)!(log 2 k) 2(j+2) _> k 1/2 from which it is easy to deduce that  

j >_k log2 k/5 log 2 log 2 k. It follows that 

Ile~ll < 2-1°g'k/51°g21°g2k 

_< exp( -  log log n/8  log log log n) 

as was needed. | 

It is not hard to get an estimate for the distance of our space from g~. We 

sketch the argument. Since c~ is orthogonal, II~ll~r-~er = k and Ilwlle~-~q = 

II'~ller--.e,~ = 1 for every w • f~, it follows that  if xj • Xj,  then Ilxjll2 = 1 and 

Ilxjlll < kJ+l. Hence, for any x • R", 

Ilxll _< max2-Jj>__0 [ kj+a Ilxll~ ^ 1]. 

Again, it is easy to see, to within 1, for which value of j the maximum oc- 

curs. It will certainly satisfy k -1 < k j+l I[xll~, that is, k j+2 > [Ix[[~ 1. If 

x = ( + n - 1 / 2 , . . . ,  5=n-1/2), then we get n 1/2 < k j+2, from which it follows eas- 

ily that  I}xll < exp ( - l o g  n/8  log log n ) ,  and hence that  the distance of our space 

from g~ is at least exp( logn/8  log log n) .  It is straightforward to obtain 
% 

a n  upper 

bound of roughly this size as well (that is, with some other constant replacing 

S). 
If one is interested in maximizing the equivalence constant between two sym- 

metric bases (i.e., in making them as non-equivalent as possible) then the main 

weakness in the construction of this paper is that we have no control over the 

degree of the vertices of the graph whose adjacency matrix we used. It is not 

hard to see that  a much larger degree would give a better result, at least if it 

was possible to obtain a lemma along the lines of Lemma 1. If k is the degree 
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and n the number of vertices, then the method could in principle give a bound oi 

about max{k 1/2, exp(log u/log k)} which is largest when k = e x p ( ~ )  or so. 

The distance of the space from g~ would be of the order of exp ( logn / logk ) ,  so 

it would be smaller, the larger the lack of equivalence, as one would expect from 

Schiitt 's result. 

However, all we have managed to prove so far is that  a very natural  class of 

graphs cannot provide substantially bet ter  examples. A regular graph G with the 

property that  any two distinct elements x, y E G have either zero or two neigh- 

bouts  in common is known to design theorists as a s e m i b i p l a n e .  A wide variety 

of semibiplanes can be constructed as follows. Regard Qk as a k-dimensional vec- 

tor space over the field with two elements in the obvious way, and let X l , . . . ,  xT 

be r elements of the space. An r-regular graph can be constructed by joining 

x E Qk to all vectors of the form x + xl for 1 < i < r. (This is just the Cayley 

graph with generators X l , . . . ,  xT). I t  is easy to see that  the graph is connected iff 

xl . . . .  , x~ is a linearly independent sequence. I t  is not hard to see also that  for 

many choices of X l , . . . ,  x~, suitably separated in some sense, the resulting graph 

is a semibiplane. Let us call the graph obtained from Qk and x l , . . . ,  xr in this 

way G(k; x b . . . ,  x~). Then the following result holds. 

PROPOSITION 4: Suppose that  the edges of G(k;x l , . . . , x~)  can be given signs 

in such a way that the (signed) adjacency matrix is orthogonal. Then r < 2k. 

In other words, the best we can do with graphs of the form G(k; x l , . . . ,  xr) is 

to double the number of non-zero entries in each row and column of the adjacency 

matrix.  This provides very weak evidence that  Theorem 3 may be best possible. 

I f  this is the case, then it seems that  a deep proof will be necessary. On the other 

hand, there are various constructions of semibiplanes not based on the cube (the 

standard reference is [11]), and even the rather special combinatorial problem of 

whether their edges can be given signs so that  their signed adjacency matrices 

become orthogonal is an interesting one. 
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